Noncommutative Geometry through Monoidal Categories I

نویسنده

  • TOMASZ MASZCZYK
چکیده

After introducing a noncommutative counterpart of commutative algebraic geometry based on monoidal categories of quasi-coherent sheaves we show that various constructions in noncommutative geometry (e.g. Morita equivalences, Hopf-Galois extensions) can be given geometric meaning extending their geometric interpretations in the commutative case. On the other hand, we show that some constructions in commutative geometry (e.g. faithfully flat descent theory, principal fibrations, equivariant and infinitesimal geometry) can be interpreted as noncommutative geometric constructions applied to commutative objects. In all these considerations we lay stress on the role of the monoidal structure, and the difference between this approach and the approach using (in general non-monoidal) abelian categories as models for categories of quasicoherent sheaves on noncommutative schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Geometry through Monoidal Categories

After introducing a noncommutative counterpart of commutative algebraic geometry based on monoidal categories of quasi-coherent sheaves we show that various constructions in noncommutative geometry (e.g. Morita equivalences, Hopf-Galois extensions) can be given geometric meaning extending their geometric interpretations in the commutative case. On the other hand, we show that some constructions...

متن کامل

ar X iv : 0 70 7 . 15 42 v 1 [ m at h . A G ] 1 1 Ju l 2 00 7 NONCOMMUTATIVE GEOMETRY THROUGH MONOIDAL CATEGORIES

After introducing a noncommutative counterpart of commutative algebraic geometry based on monoidal categories of quasi-coherent sheaves we show that various constructions in noncommutative geometry (e.g. Morita equivalences, Hopf-Galois extensions) can be given geometric meaning extending their geometric interpretations in the commutative case. On the other hand, we show that some constructions...

متن کامل

Derived Algebraic Geometry II: Noncommutative Algebra

1 Monoidal ∞-Categories 4 1.1 Monoidal Structures and Algebra Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Cartesian Monoidal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Subcategories of Monoidal ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Free Algebras . . . . . . . . . . . . . . . . . . ....

متن کامل

Derived Algebraic Geometry II: Noncommutative Algebra

1 Monoidal ∞-Categories 4 1.1 Monoidal Structures and Algebra Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Cartesian Monoidal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Subcategories of Monoidal ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Free Algebras . . . . . . . . . . . . . . . . . . ....

متن کامل

Derived Algebraic Geometry II: Noncommutative Algebra

1 Monoidal ∞-Categories 4 1.1 Monoidal Structures and Algebra Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Cartesian Monoidal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Subcategories of Monoidal ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Free Algebras . . . . . . . . . . . . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006